ADONIS 0014579391009605

Correspondence

Comment: di(1, N^6 -ethenoadenosine)-5',5'''- P^1 , P^4 -tetraphosphate, a fluorescent enzymatically active derivative of Ap₄A

A.G. McLennan

Department of Biochemistry, School of Life Sciences, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK

Received 1 July 1991

Rotllán et al. have recently reported in this journal the synthesis of $di(1,N^6$ -ethenoadenosine)-5',5"'- P^1 , P^4 -tetraphosphate ($\varepsilon Ap_4\varepsilon A$), a fluorescent derivative of diadenosine tetraphosphate (Ap_4A), by the direct modification of Ap_4A with chloroacetaldehyde. The 7-fold enhancement of fluorescence observed upon enzymic hydrolysis of this compound to $1,N^6$ -etheno-AMP (εAMP) by crude cellular extracts led the authors to suggest that it may be of use as a sensitive substrate for the assay of the specific Ap_4A hydrolases that are found in all tissues [1]. The clear implication of this paper is that this is a new analogue of Ap_4A and that the potential application to the assay of Ap_4A hydrolases is also novel.

It is unfortunate that the authors appear to be entirely unaware of several previous reports of the synthesis and applications of etheno- derivatives of Ap₄A and other related dinucleoside polyphosphates. The first of these appeared in 1975 when Feldhaus et al. reported the synthesis of asymmetrically-modified $1,N^6$ -etheno- Ap_sA (εAp_sA) by the diphenyl phosphochloridate-mediated condensation of adenosine 5'-tetraphosphate with ε AMP [2]. This compound was used as a sensitive fluorescent probe for the nucleotide binding site of skeletal muscle adenylate kinase. εAp₄εA itself was first synthesized from Ap₄A and chloroacetaldehyde in 1984 and shown to be a potentially useful substrate for snake venom phosphodiesterase [3,4]. These authors also synthe sized the mono-substituted εAp_4A from εADP and ADP using carbonyldiimidazole. The most comprehensive investigation of these compounds was provided by

David Shugar's group who synthesized $\varepsilon Ap_2\varepsilon A$, $\varepsilon Ap_3\varepsilon A$ and $\varepsilon Ap_4\varepsilon A$ directly from the parent nucleotides as above and characterized them extensively with regard to their use as substrates for potato nucleotide pyrophosphatase and snake venom phosphodiesterase [5]. In their paper, Wierzchowski et al. also discussed the potential value of $\varepsilon Ap_3\varepsilon A$ and $\varepsilon Ap_4\varepsilon A$ as substrates for the continuous fluorimetric assay of the specific dinucleoside polyphosphate hydrolases [5]. Finally, Suzuki et al. have described the inhibition of histone H1 ADP-ribosylation catalyzed by bovine thymus poly(ADP-ribose)transferase by both $\varepsilon Ap_4\varepsilon A$ and $\varepsilon Ap_4\varepsilon A$ (synthesized by Shumvantseva) [6].

The properties of $\varepsilon Ap_4\varepsilon A$ described by Rottlán et al. are identical to those described by previous authors; thus their paper makes no further contribution to what is already known about these compounds and their possible uses.

REFERENCES

- [1] Rotllán, P., Ramos, A., Pintor, J., Torres, M. and Miras-Portugal, M.T. (1991) FEBS Lett. 280, 371-374.
- [2] Feldhaus, P., Fröhlich, T., Goody, R.S., Isakov, M. and Schirmer, R.H. (1975) Eur. J. Biochem. 57, 197-204.
- [3] Shumyantzeva, V.V. and Poletaev, A.I. (1984) Nucleic Acids Res. Symp. Ser. No. 14, 289–290.
- [4] Shumyantseva, V.V., Poletaev, A.I. and Gnuchev, N.V. (1985) Bioorg, Khim. 11, 227-230.
- [5] Wierzchowski, J., Sierakowska, H. and Shugar, D. (1985) Biochim. Biophys. Acta 828, 109-115.
- [6] Suzuki, H., Tanaka, Y., Buonamassa, D.T., Farina, B. and Leone, E. (1987) Mol. Cell. Biochem. 74, 17-20.